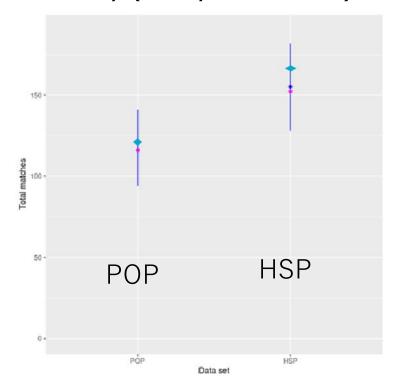

Doc #26 (meta-rules)

• Did 2 things:

- Examined whether observations/information of CPUE, GT, and CKMR are consistent w/ the ranges predicted by OM along MP meta-rule process
- 2) Briefly discussed other possible elements which constitute Exceptional Circumstances

LL CPUE is w/in the predicted range?


✓ LL CPUE is w/in the predicted range.

Information from GT is w/in the predicted range?

- This year, there've been delays in genotyping the harvest tissue samples collected in 2023, and so the estimate of age 2 abundance in 2022 is not yet available
- ✓ But incomplete, estimate indicates that age 2 abundance will be well above the limit levels (corresponding w/ low recruitments observed in the 2000s) used in the CTP (Preece & Davies 2024)
- ✓ Additionally, there is no marked change observed for the 2020 cohort (age 2 in 2022) at age 1 in the grid-type trolling index (Takahashi & Itoh 2024)

Data from CKMR is w/in the predicted range?

- Muscle tissue samples of adults for CKMR were not collected f/ the Indonesian LL in 2021/22 season and very few adult samples were collected in 2022/23 due to disruptions caused by institutional changes in Indonesia
- In contrast, muscle tissue samples were collected f/ harvested juveniles at tuna processors in Port Lincoln, Australia, in 2022, and were analyzed
- Thus, the numbers of detected POPs and HSPs were updated to include the new juvenile data only (Farley et al. 2024)

"Reference set" prediction

 \checkmark The data fall w/in the range expected f/ the OM (Preece & Davies 2024).

Exceptional Circumstances (EC)?

- CPUE, GT, and CKMR
 - Consistent w/ the range predicted by the OM
- ✓ No, not EC

- Global TAC vs reported catch
 - Differences:
 - -535t (2017), -399t (2018), -505t (2019), -1418t (2020),
 - -979t (2021), -1230t (2022), -605t (2023, tentative)
- ✓ Recent reported catches were below the global TACs, thus no EC

UAM

- CTP tested considering NCNM UAM ("MP approach"), assuming that the amount which is equal to a 10% of LL1 catch as NCNM UAM
- A 10% of the quota for LL1 for 2023 \approx 890t
- Average estimated NCNM UAM over 2007 to 2020 ranges 223t to 632t
- ✓ On average, the scale of the estimated NCNM UAM is smaller than the assumed, thus no EC
 - However, yearly estimates of LL effort for NCNM UAM appear to increase recent years (Edwards & Hoyle 2023), and thus the ESC should continue to keep a careful watch on changes of the scale of NCNM UAM

- 2023 stock assessment
 - Key stock status summary ratios from 2023 stock assessment are improved compared to the last (2020) assessment (e.g., median relative TRO, is 0.20 in 2019 and 0.23 in 2022)
 - Future projections based on this 2023 reconditioning show that the CTP reaches a median TRO depletion of 0.30 w/ a probability of 0.51 by 2035, which indicates achieving the management objective.
- ✓ Thus, no evidence to support a declaration of EC

- A little bit of concern...
 (just waving the flag for future potential EC)
 - Muscle tissue samples of adult for CKMR were not collected f/ the Indonesian LL in the 2021/22 season and only very limited samples were collected in 2022/23 and 2023/24 due to disruptions caused by institutional changes in Indonesia (Farley et al. 2023, 2024).
 - -> We anticipate that the situation will be improved next year.
 - Since 2021, catches in Area 2 have been considerably increased compared to those in Area 1, which may indicate some potential changes in operation pattern of Indonesian LL fleet.
 - -> Future changes in operation pattern of this fleet should continue to be monitored along with resolving the uncertainty associated w/ the size and age composition of this fishery (Farley et al. 2021, Davies et al. 2023).

Conclusion

- Regarding a decision on implementation of the recommended 2025 TAC, no modification is required because:
 - 1) no evidence to support a declaration of EC related to the factors discussed above;
 - 2) no unexpected change detected in fisheries and scientific survey indicators examined (Patterson 2024, Takahashi and Itoh 2024)